On a Sufficient Condition for Proximity

نویسنده

  • KA-SING LAU
چکیده

A closed subspace M in a Banach space X is called t/-proximinal if it satisfies: (1 + p)S n (S + M) ç S + e(pXS n M), for some positive valued function t(p), p > 0, and e(p) -» 0 as p -> 0, where 5 is the closed unit ball of X. One of the important properties of this class of subspaces is that the metric projections are continuous. We show that many interesting subspaces are (/-proximinal, for example, the subspaces with the 2-ball property (semi M-ideals) and certain subspaces of compact operators in the spaces of bounded linear operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Necessary and Sufficient Proximity Condition for Smoothness Equivalence of Nonlinear Subdivision Schemes

In the recent literature on subdivision methods for approximation of manifold-valued data, a certain “proximity condition” comparing a nonlinear subdivision scheme to a linear subdivision scheme has proved to be a key analytic tool for analyzing regularity properties of the scheme. This proximity condition is now well-known to be a sufficient condition for the nonlinear scheme to inherit the re...

متن کامل

Proximity Point Properties for Admitting Center Maps

In this work we investigate a class of admitting center maps on a metric space. We state and prove some fixed point and best proximity point theorems for them. We obtain some results and relevant examples. In particular, we show that if $X$ is a reflexive Banach space with the Opial condition and $T:Crightarrow X$ is a continuous admiting center map, then $T$ has a fixed point in $X.$ Also, we ...

متن کامل

Best proximity pair and coincidence point theorems for nonexpansive set-valued maps in Hilbert spaces

This paper is concerned with the best proximity pair problem in Hilbert spaces. Given two subsets $A$ and $B$ of a Hilbert space $H$ and the set-valued maps $F:A o 2^ B$ and $G:A_0 o 2^{A_0}$, where $A_0={xin A: |x-y|=d(A,B)~~~mbox{for some}~~~ yin B}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in A$ such that $$d(G(x_0),F(x_0))=d(A,B).$$

متن کامل

Best proximity point theorems in Hadamard spaces using relatively asymptotic center

In this article we survey the existence of best proximity points for a class of non-self mappings which‎ satisfy a particular nonexpansiveness condition. In this way, we improve and extend a main result of Abkar and Gabeleh [‎A‎. ‎Abkar‎, ‎M‎. ‎Gabeleh‎, Best proximity points of non-self mappings‎, ‎Top‎, ‎21, (2013)‎, ‎287-295]‎ which guarantees the existence of best proximity points for nonex...

متن کامل

A Sharp Sufficient Condition for Sparsity Pattern Recovery

Sufficient number of linear and noisy measurements for exact and approximate sparsity pattern/support set recovery in the high dimensional setting is derived. Although this problem as been addressed in the recent literature, there is still considerable gaps between those results and the exact limits of the perfect support set recovery. To reduce this gap, in this paper, the sufficient con...

متن کامل

New best proximity point results in G-metric space

Best approximation results provide an approximate solution to the fixed point equation $Tx=x$, when the non-self mapping $T$ has no fixed point. In particular, a well-known best approximation theorem, due to Fan cite{5}, asserts that if $K$ is a nonempty compact convex subset of a Hausdorff locally convex topological vector space $E$ and $T:Krightarrow E$ is a continuous mapping, then there exi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1979